# Tricyclic Heteroaromatic Systems. Synthesis and $A_{1}$ and $\mathbf{A}_{\mathbf{2 a}}$ Adenosine Binding Activities of Some <br> 1-Aryl-1,4-dihydro-3-methyl[1]benzopyrano[2,3-c]pyrazol-4-ones, 1-Aryl-4,9-dihydro-3-methyl-1H-pyrazolo[3,4-b]quinolin-4-ones, and 1-Aryl-1H-imidazo[4,5-b]quinoxalines 

Daniela Catarzi, Lucia Cecchi,* Vittoria Colotta, and Guido Filacchioni<br>Dipartimento di Scienze Farmaceutiche, Universita' di Firenze, Via Gino Capponi 9, 50121 Firenze, Italy

Claudia Martini, Paolo Tacchi, and Antonio Lucacchini
Istituto Policattedra di Discipline Biologiche, Universita' di Pisa, Via Bonanno 6, 56100 Pisa, Italy
Received November 3, $1994^{8}$


#### Abstract

The syntheses and $\mathrm{A}_{1}$ and $\mathrm{A}_{2 \mathrm{a}}$ adenosine binding activities of some new 1-aryl-1,4-dihydro-3-methyl[1]benzopyrano[2,3-c]pyrazol-4-ones, 1-aryl-4,9-dihydro-3-methyl-1H-pyrazolo[3,4-b]-quinolin-4-ones, and 1-aryl-1H-imidazo[4,5-b]quinoxalines are reported. Some compounds show $\mathrm{A}_{1}$ adenosine receptor affinity and selectivity. Structure-activity relationships on these new classes of adenosine receptor ligands are defined.


## Introduction

Extracellular adenosine receptors (AR) are divided into subtypes, $\mathrm{A}_{1} A R$ and $\mathrm{A}_{2} \mathrm{AR}$, which are distinguished by their different effect on adenyl cyclase. ${ }^{1}$ Adenosine interaction with $\mathrm{A}_{1} \mathrm{AR}$ inhibits adenyl cyclase, whereas interaction with $\mathrm{A}_{2} \mathrm{AR}$ stimulates it. $\mathrm{A}_{2} \mathrm{AR}$ can be further subdivided into high-affinity $\mathrm{A}_{2 \mathrm{a}} \mathrm{AR}$ and lowaffinity $A_{2 b} A R$ subtypes. Recently a fourth $A R$ subtype, $\mathrm{A}_{3} A R$, was cloned. ${ }^{2-4}$ Interaction of adenosine with $\mathrm{A}_{3}-$ $A R$, as with $A_{1} A R$, inhibits adenyl cyclase, ${ }^{2}$ and one of its physiological functions is to facilitate mast cell degranulation. ${ }^{5}$
The development of subtype-selective agonists and antagonists of AR, an active area of research, has aimed at providing tools with which to define the structural requirements of each receptor subtype. In recent years some research in our laboratory has been directed toward the synthesis of non-xanthine antagonists of the AR containing a six-six-five tricyclic ring system..$^{6-9}$ This program has led to the discovery of a new specific $\mathrm{A}_{2} \mathrm{AR}$ antagonist, ${ }^{7}$ 1-(3-aminophenyl)-3-methyl[1]benzopyrano[ $2,3-\mathrm{c}$ ]pyrazol-4-one (1) (see Chart 1). Compound 1 provided the lead of a series of analogues which are the object of this paper. In fact, to better understand the structural requirements for the anchoring of this new kind of ligand to the AR recognition sites, we hereby report the syntheses and the $\mathrm{A}_{1}$ and $\mathrm{A}_{2 \mathrm{a}}$ binding activities of some new 1-aryl-1,4-dihydro-3-methyl[1]benzopyrano [ 2,3 -c]pyrazol-4-ones ( $2-23$ ), their isosters 1-aryl-4,9-dihydro-3-methyl-1 H -pyrazolo[ 3,4 -b]quinolin4 -ones ( $\mathbf{2 4 - 3 0}$ ), and some 1 -aryl- $1 H$-imidazo[ $4,5-b]$ quinoxalines (31-33).

## Chemistry

The syntheses of the benzopyranopyrazoles $2-23$ are illustrated in Schemes 1-3. Allowing the 3-acetyl-4hydroxycoumarins $34-37^{10-11}$ to react with arylhydrazines, the arylhydrazones 38-44 were isolated. By

[^0]Chart 1


1


2-23: $X=O$
24-30: $X=N H$


31-33
heating 38-44 at reflux in glacial acetic acid, nucleophilic attack of the $\alpha$-arylhydrazone nitrogen on the $\mathrm{C}-2$ lactone carbonyl occurs, with consequent ring opening; thus the corresponding 1 -aryl-4-(2-hydroxyaroyl)-3-methylpyrazol- 5 -ols 45-51 were obtained. Heating of the latter with an excess of $\mathrm{POCl}_{3}$ yielded the 1 -aryl-1,4-dihydro-3-methyl[1]benzopyrano[2,3-c]pyrazol-4ones $2-8$ (see Scheme 1 ).
The 7 -methoxy- and 6 -methoxybenzopyranopyrazoles 3-6 were demethylated with hydrobromic acid to yield the 7 -hydroxy- and 6 -hydroxy derivatives $9-12$. The 7-hydroxy derivative 10 was alkylated to give compounds 13-15 (see Scheme 2).
The 1-(3-nitroaryl) derivatives $2,4,6,8,10,13$, and 14 were catalytically reduced to the corresponding 1-(3-aminoaryl)-1,4-dihydro-3-methyl[1]benzopyrano[2,3-c]-pyrazol-4-ones $16-22$, while the previously reported $\mathrm{A}_{2}$ selective antagonist 1 -(3-aminophenyl)-3-methyl[1]benzopyrano[ 2,3 -c]pyrazol-4-one ( 1$)^{7}$ was transformed into the 1-[3-(benzylamino)phenyl] derivative 23 (see Scheme 3).
The syntheses of the pyrazoloquinolines $24-\mathbf{3 0}$ are illustrated in Schemes 4-5. Treatment of 2 -acetonyl$4 H$-3,1-benzoxazin-4-one ${ }^{12}$ with arylhydrazines gave the $N$-(1-aryl-3-methylpyrazol-5-yl)anthranilic acids 52-55. By heating the latter with a mixture of $\mathrm{P}_{2} \mathrm{O}_{5}$ and poly(phosphoric acid), the 1-aryl-4,9-dihydro-3-methyl-1Hpyrazolo[ $3,4-b] q u i n o l i n-4$-ones $24-27$ were obtained (see Scheme 4).

## Scheme 1


34: $R=H$ 38-44
35: $R=7-\mathrm{OMe}$
36: $R=6-\mathrm{OMe}$
37: $R=6-\mathrm{Br}$


| 2-8 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{R}$ | $\mathbf{R}_{1}$ | $\mathbf{R}_{\mathbf{2}}$ |  |
| $\mathbf{2 , 3 8}$ | H | $\mathrm{NO}_{\mathbf{2}}$ | Cl |  |
| $\mathbf{3}, 39$ | $7-\mathrm{OMe}$ | H | H |  |
| $\mathbf{4 , 4 0}$ | $7-\mathrm{OMe}$ | $\mathrm{NO}_{2}$ | H |  |
| $\mathbf{5 , 4 1}$ | $6-\mathrm{OMe}$ | H | H |  |
| $\mathbf{6 , 4 2}$ | $6-\mathrm{OMe}$ | $\mathrm{NO}_{2}$ | H |  |
| $\mathbf{7 , 4 3}$ | $6-\mathrm{Br}$ | H | H |  |
| $\mathbf{8 , 4 4}$ | $6-\mathrm{Br}$ | $\mathrm{NO}_{2}$ | H |  |


| $\mathbf{4 5 - 5 1}$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
|  | $\mathbf{R}$ | $\mathbf{R}_{1}$ | $\mathbf{R}_{\mathbf{2}}$ |  |  |
| $\mathbf{4 5}$ | H | $\mathrm{NO}_{2}$ | Cl |  |  |
| $\mathbf{4 6}$ | $4-\mathrm{OMe}$ | H | H |  |  |
| $\mathbf{4 7}$ | $4-\mathrm{OMe}$ | $\mathrm{NO}_{2}$ | H |  |  |
| $\mathbf{4 8}$ | $5-\mathrm{OMe}$ | H | H |  |  |
| $\mathbf{4 9}$ | $5-\mathrm{OMe}$ | $\mathrm{NO}_{2}$ | H |  |  |
| $\mathbf{5 0}$ | $5-\mathrm{Br}$ | H | H |  |  |
| $\mathbf{5 1}$ | $\mathbf{5 - B r}$ | $\mathrm{NO}_{2}$ | H |  |  |

Scheme 2


The 1-(3-methoxyphenyl) derivative 25 was demethylated to the corresponding 1-(3-hydroxyphenyl) compound 28, while catalytic hydrogenation of the 1-(3nitroaryl)pyrazoloquinolines 26 and 27 afforded the corresponding 1 -(3-aminoaryl)-4,9-dihydro-3-methyl-1 $H$ -pyrazolo[3,4-b]quinolin-4-ones 29 and 30 (see Scheme 5).

Finally, the synthesis of the 1 -arylimidazo[4,5-b]quinoxalines 31-33 is illustrated in Scheme 6. By reacting 3 -chloroquinoxalin-2-amine ${ }^{13}$ with suitable anilines, followed by treatment of the resulting hydrochloride with $\mathrm{NaHCO}_{3}$, compounds $56-58$ were isolated. Cyclization of 56-58 with triethyl orthoformate afforded the tricyclic derivatives 31-33.
The chemical structures of all the newly synthesized compounds were determined by IR and ${ }^{1} \mathrm{H}$ NMR spectroscopy. The 4 -oxo structure of compounds $\mathbf{2 4 - 3 0}$ is in agreement with the literature data. ${ }^{14,15}$

## Biochemistry

Compounds 2-33 were tested for their ability to displace $\left[{ }^{3} \mathrm{H}\right]-N^{6}$-cyclohexyladenosine (CHA) on $\mathrm{A}_{1} \mathrm{AR}$ in

## Scheme 3



## Scheme 4



rat cerebral cortical membranes and $\left.{ }^{3} \mathrm{H}\right]-2-[[4-(2$-car-boxyethyl)phenethyl]amino]-5'-( $N$-ethylcarbamoyl)adenosine (CGS 21680) on $A_{2 a} A R$ in rat striatal membranes. The $A_{1}$ and $A_{2 a}$ receptor affinities of the tested compounds, expressed as their $K_{\mathrm{i}}$ values, are listed in Table 1 together with that of the previously reported compound 1 which is included as a reference.

## Results and Conclusions

Table 1 shows that the $\mathrm{A}_{2} \mathrm{AR}$ affinity and selectivity of the lead structure 1 is completely lost in the compounds under study while $\mathrm{A}_{1}$ AR affinity and selectivity is widely distributed among them. The disappearance of the $\mathrm{A}_{2}$ binding activity indicates that (i) the presence of the primary amino group not bearing a bulky ortho substituent is of paramount importance-when in 1 a hydrogen of the $\mathrm{NH}_{2}$ is replaced with a benzyl, as in

## Scheme 5




$$
\begin{aligned}
& \text { 29: } R_{2}=H \\
& \text { 30: } R_{2}=C l
\end{aligned}
$$

## Scheme 6



23, or the $\mathrm{NH}_{2}$ is ortho-substituted with a chlorine atom, as in 16, there is either a 130 -fold decrease in activity or complete inactivity at the $\mathrm{A}_{2}$ receptor subtype, respectively; (ii) the presence of a substituent at the 6or 7-position is detrimental for the $\mathrm{A}_{2}$ binding activity of 1 -compounds $17-22$ show at least a 37 -fold decreased $\mathrm{A}_{2}$ affinity; clearly the 1-phenyl- and 1-(3nitrophenyl) derivatives $2-15$ are devoid of $A_{2}$ affinity; and (iii) the benzopyranopyrazolo moiety is also important for the $A_{2}$ binding activity-comparison of 1 with its isoster 29 shows that the latter has very low $\mathrm{A}_{2}$ affinity like all the other pyrazoloquinolines (24-28, 30 ). The 1-(3-methoxyphenyl) derivative 25 alone displays some $A_{2}$ binding activity, although compound 25 is 2.5 -fold more active at the $\mathrm{A}_{1} \mathrm{AR}$. Similar considerations apply to the imidazoquinoxalines 31-33.
The appearance of $A_{1}$ affinity and selectivity in most of the benzopyranopyrazoles $2-23$ is clearly to be attributed to the presence of the substituent on the fused benzo moiety. This is demonstrated by comparison of the $A_{1}$ binding activity of the lead 1 with those of the 1 -amino 6 - or 7 -substituted compounds $16-20$ and 22.

It may be hypothesized that the 6- or 7 -substituent occupies a subregion of the $A_{1} A R$ domain, thus shifting the affinity of the lead structure 1 from $A_{2}$ to $A_{1}$ subtype. It should be noted that in the 6 - or 7 -substituted benzopyranopyrazoles $3-5,7,9-12,17-20$, and 22 the

3-amino group on the 1-phenyl ring is not essential for the $A_{1}$ binding activity, since all the 1 -phenyl ( $3,5,7$, $9,11)$ and some 1-(3-nitrophenyl) $(4,10,12)$ derivatives display similar $A_{1}$ affinity to the corresponding 1-(3aminophenyl) derivatives 17-20.

Comparison of the $A_{1}$ affinity of the lead structure 1 with that of the 1-(3-amino-4-chlorophenyl) analogue 16 reveals that the ortho chloro on the 1-(3-aminophenyl) ring in this case is advantageous. There is a limited bulk tolerance in the accommodation of the substituents of the reported benzopyranopyrazoles on the $A_{1} A R$ recognition site; the 7 -methoxy compounds 3,4 , and 17 are well accommodated when they are bearing either a $\mathrm{H}, \mathrm{NO}_{2}$, or $\mathrm{NH}_{2}$ group on the 1-phenyl ring. However the $n$-propoxy chain at position 7 is well tolerated only when there is a $\mathrm{NH}_{2}$ on the 1-phenyl ring, as in 22; otherwise, when the 1 -phenyl ring bears the bulkier $m-\mathrm{NO}_{2}$, as in 14 , the $7-n$-propoxy chain is no longer tolerated.

These data suggest that the benzopyranopyrazole moiety occupies almost all the $A_{1} A R$ recognition site and that little room is left for bulky substituents. The low $\mathrm{A}_{1}$ binding activity of the 1-(3-aminophenyl) 7-(phenethyloxy) derivative 21 confirms this.

In conclusion, previous ${ }^{8}$ and present data indicate that every modification made to the structure of the $A_{2}$ selective compound 1 led to loss of $A_{2}$ affinity and/or selectivity. In any event, the hereby reported analogues of 1 produced some selective and structurally novel $A_{1}$ adenosine receptor ligands which may serve as tools to further define structure-activity relationships in the anchoring of these new kinds of adenosine receptor ligands to the adenosine receptor subtypes.

## Experimental Section

Chemistry. Silica gel plates (Merck; $\mathrm{F}_{254}$ ) and silica gel 60 (Merck; 70-230 mesh) were used for analytical and column chromatography, respectively. All melting points were determined on a Gallemkamp capillary melting point apparatus. The IR spectra were recorded on a Perkin-Elmer 1420 spectrometer in Nujol mull and are reported in $\mathrm{cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR spectra were obtained with a Varian Gemini 200 instrument at 200 MHz . The chemical shifts are reported in $\delta$ using the following abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad, and $\mathrm{ar}=$ aromatic proton(s). Microanalyses were performed with a Perkin-Elmer 260 elemental analyzer for $\mathrm{C}, \mathrm{H}$, and N , and the results are within $\pm 0.4 \%$ of the theoretical values. The physical data of the newly synthesized compounds are listed in Table 2. Phenylhydrazine and other arylhydrazine hydrochlorides were commercially available except for (3-chloro-4nitrophenyl)hydrazine, which was obtained as the hydrochloride following the procedure described in ref 16.

Arylhydrazones of 3-Acetyl-4-hydroxycoumarins 3844. Phenylhydrazine or arylhydrazine hydrochloride ( 8.5 mmol ), liberated in situ as free base with an equimolar amount of triethylamine, was added to a mixture of 34-3710-11 (8.5 mmol ) in hot ethanol. The mixture was heated at reflux for 15 min . The resulting solid was isolated and recrystallized. Compound 38 displayed the following spectral data. IR: 3240 , $1685,1620,1540,1350 .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}$ ): 2.65 ( $\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 7.15-7.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ar}), 7.30-7.40(\mathrm{~m}, 2 \mathrm{H}$, ar), $7.50-7.58$ (m, 1H, ar), 7.62-7.75 (m, 2H, ar), 7.95-8.05 (m, 1H, ar), 9.72 (s, $1 \mathrm{H}, \mathrm{NH}$ ).

1-Aryl-4-(2-hydroxyaroyl)-3-methylpyrazol-5-ols 4551. A mixture of $\mathbf{3 8 - 4 4 ( 3 . 1 \mathrm { mmol } ) \text { in glacial acetic acid ( } 1 0 0}$ mL ) was heated at reflux for 15 min . Elimination of the solvent at reduced pressure yielded a residue which was worked up with ethanol ( 10 mL ). The resulting solid was collected and recrystallized. Compound $\mathbf{4 5}$ displayed the

Table 1. $\mathrm{A}_{1}$ and $\mathrm{A}_{2 \mathrm{a}}$ Adenosine Binding Activity ${ }^{a}$


1-30

| no. | X | R | $\mathrm{R}_{1}$ | $\mathrm{R}_{2}$ | $K_{i} \pm \operatorname{SEM}(\mu \mathrm{M})^{\text {b }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\mathrm{A}_{1}{ }^{\text {c }}$ | $\mathrm{A}_{2 \mathrm{a}}{ }^{\text {d }}$ |
| $1{ }^{\text {e }}$ | 0 | H | $\mathrm{NH}_{2}$ | H | $3.2 \pm 0.5$ | $0.025 \pm 0.004$ |
| 2 | 0 | H | $\mathrm{NO}_{2}$ | Cl | >20 | >20 |
| 3 | 0 | $7-\mathrm{OMe}$ | H | H | $0.46 \pm 0.031$ | >20 |
| 4 | O | $7-\mathrm{OMe}$ | $\mathrm{NO}_{2}$ | H | $0.31 \pm 0.026$ | $>20$ |
| 5 | 0 | $6-\mathrm{OMe}$ | H | H | $0.27 \pm 0.021$ | $1.62 \pm 0.12$ |
| 6 | 0 | 6 -OMe | $\mathrm{NO}_{2}$ | H | > 20 | > 20 |
| 7 | 0 | $6-\mathrm{Br}$ | H | H | $0.53 \pm 0.040$ | $2.92 \pm 0.18$ |
| 8 | 0 | $6-\mathrm{Br}$ | $\mathrm{NO}_{2}$ | H | $3.50 \pm 0.23$ | $>20$ |
| 9 | 0 | $7-\mathrm{OH}$ | H | H | $0.22 \pm 0.018$ | $3.69 \pm 0.22$ |
| 10 | 0 | $7-\mathrm{OH}$ | $\mathrm{NO}_{2}$ | H | $0.36 \pm 0.023$ | >20 |
| 11 | 0 | $6-\mathrm{OH}$ | H | H | $0.34 \pm 0.027$ | $1.18 \pm 0.09$ |
| 12 | 0 | $6-\mathrm{OH}$ | $\mathrm{NO}_{2}$ | H | $0.38 \pm 0.01$ | $33 \%(10 \mu \mathrm{M})^{f}$ |
| 13 | 0 | 7-O( $\left.\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$ | $\mathrm{NO}_{2}$ | H | >20 | $>20$ |
| 14 | 0 | $7-\mathrm{OC}_{3} \mathrm{H}_{7}(n)$ | $\mathrm{NO}_{2}$ | H | $>20$ | $>20$ |
| 15 | 0 | $7-\mathrm{OCH}_{2} \mathrm{Ph}$ | $\mathrm{NO}_{2}$ | H | $>20$ | $>20$ |
| 16 | 0 | H | $\mathrm{NH}_{2}$ | Cl | $0.94 \pm 0.08$ | >20 |
| 17 | $\bigcirc$ | 7-OMe | $\mathrm{NH}_{2}$ | H | $0.26 \pm 0.021$ | $1.22 \pm 0.11$ |
| 18 | 0 | 6 -OMe | $\mathrm{NH}_{2}$ | H | $0.09 \pm 0.007$ | $1.37 \pm 0.11$ |
| 19 | 0 | $6-\mathrm{Br}$ | $\mathrm{NH}_{2}$ | H | $0.78 \pm 0.051$ | $2.70 \pm 0.19$ |
| 20 | 0 | 7-OH | $\mathrm{NH}_{2}$ | H | $0.64 \pm 0.042$ | $0.92 \pm 0.083$ |
| 21 | 0 | 7-O( $\left.\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$ | $\mathrm{NH}_{2}$ | H | $16 \pm 1.3$ | >20 |
| 22 | 0 | $7-\mathrm{OC}_{3} \mathrm{H}_{7}(n)$ | $\mathrm{NH}_{2}$ | H | $0.20 \pm 0.02$ | 45\% (10 $\mu \mathrm{M}$ ) ${ }^{\text {f }}$ |
| 23 | 0 | H | $\mathrm{NHCH}_{2} \mathrm{Ph}$ | H | $1.93 \pm 0.13$ | $3.28 \pm 0.23$ |
| 24 | NH | H | H | H | $3.30 \pm 0.28$ | $3.70 \pm 0.34$ |
| 25 | NH | H | OMe | H | $0.25 \pm 0.021$ | $0.71 \pm 0.056$ |
| 26 | NH | H | $\mathrm{NO}_{2}$ | H | $0.47 \pm 0.038$ | $>20$ |
| 27 | NH | H | $\mathrm{NO}_{2}$ | Cl | $>20$ | $>20$ |
| 28 | NH | H | OH | H | $2.23 \pm 0.17$ | $1.5 \pm 0.12$ |
| 29 | NH | H | $\mathrm{NH}_{2}$ | H | $18 \pm 1.3$ | $5.16 \pm 0.38$ |
| 30 | NH | H | $\mathrm{NH}_{2}$ | Cl | $4.47 \pm 0.37$ | $4.46 \pm 0.32$ |
| 31 |  |  | $\mathrm{OCH}_{3}$ |  | $5.1 \pm 0.34$ | $18.2 \pm 1.3$ |
| 32 |  |  | $\mathrm{NO}_{2}$ |  | $0.24 \pm 0.016$ | $2.96 \pm 0.17$ |
| 33 |  |  | OH |  | $2.63 \pm 0.18$ | >20 |

${ }^{a}$ The tests were carried out dissolving the tested compounds in DMSO (DMSO/buffer, $2 \%$ ). ${ }^{b}$ The $K_{i}$ values are means $\pm$ SEM of four separate assays, each performed in triplicate. ${ }^{c} \mathrm{~A}_{1}$ binding was measured as displacement of $\left[{ }^{3} \mathrm{H}\right] \mathrm{CHA}$ binding. ${ }^{d} \mathrm{~A}_{2 \mathrm{a}}$ binding was measured as displacement of $\left[{ }^{3} \mathrm{H}\right] \mathrm{CGS} 21680$ binding. ${ }^{e}$ Reference 7. $f$ Percentage of inhibition ( $I \%$ ) of specific radioligand at the compound concentration shown in parentheses. Due to the compound insolubility, this concentration is the highest possible.
following spectral data. IR: $2800-2000,1630,1550,1350 .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}$ ): $2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.5-7.2(\mathrm{br} \mathrm{s}+\mathrm{m}, 4 \mathrm{H}$, 2 H , ar +2 OH ), $7.33-7.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ar}), 7.56-7.65(\mathrm{~m}, 1 \mathrm{H}$, ar), 7.85 (d, 1H, ar, $J=8.9 \mathrm{~Hz}$ ), $8.14-8.20(\mathrm{~m}, 1 \mathrm{H}$, ar), 8.57 (s, 1 H , ar).

1-Aryl-1,4-dihydro-3-methyl[1]benzopyrano[2,3-c]pyra-zol-4-ones 2-8. A suspension of $\mathbf{4 5 - 5 1}(3.1 \mathrm{mmol})$ in $\mathrm{POCl}_{3}$ $(10 \mathrm{~mL})$ was heated in an oil bath at $80^{\circ} \mathrm{C}$ for 15 min . Evaporation at reduced pressure of the excess of $\mathrm{POCl}_{3}$ yielded an oily residue which was treated with chloroform ( 80 mL ) and water ( 40 mL ). The organic layer was washed three times with water ( 30 mL each time), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated at reduced pressure to yield a residue which was recrystallized. Compound 2 displayed the following spectral data. IR: 1670 , $1540,1370 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ : $2.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.45-7.75$ ( $\mathrm{m}, 4 \mathrm{H}, \mathrm{ar}$ ), $8.16-8.20$ ( $\mathrm{m}, 1 \mathrm{H}$, ar), $8.35-8.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ar}), 8.59$ (s, $1 \mathrm{H}, \mathrm{ar}$ ).

1-Aryl-1,4-dihydro-7(or 6)-hydroxy-3-methyl[1]benzo-pyrano[2,3-c]pyrazol-4-ones 9-12. To a suspension of the 7- or 6-methoxy derivative 3-6 ( 3.3 mmol ) in glacial acetic acid $(10 \mathrm{~mL})$ was added hydrobromic acid $(48 \%, 25 \mathrm{~mL})$. The mixture was heated at reflux for 12 h and then cooled. The resulting precipitate was collected by filtration, washed with
water, and recrystallized. Compound 9 displayed the following spectral data. IR: $3145,1650,1620,1540 .{ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}\right): 2.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.92-6.99(\mathrm{~m}, 2 \mathrm{H}$, ar), $7.40-7.50(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{ar}), 7.58-7.68$ (m, $2 \mathrm{H}, \mathrm{ar}$ ), $7.90-7.94$ (m, $2 \mathrm{H}, \mathrm{ar}$ ), $8.0-$ $8.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ar}), 10.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$.

7-(Alkyloxy)-1,4-dihydro-3-methyl-1-(3-nitrophenyl)[1]-benzopyrano[2,3-c]pyrazol-4-ones 13 and 14. To a suspension of $10(4.4 \mathrm{mmol})$ in 2-butanone $(60 \mathrm{~mL})$ were added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( 13.2 mmol ) and phenethyl bromide ( 13.2 mmol ) or $n$-propyl bromide ( 22.2 mmol ). The mixture was heated at reflux for 10 h . Evaporation of the solvent at reduced pressure yielded a residue which was treated with water $(20 \mathrm{~mL})$ to eliminate the excess of carbonate, filtered, and recrystallized. Compound 13 displayed the following spectral data. IR: 1670 , $1630,1540,1350 .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$ ): $2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.13$ $\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=7.3 \mathrm{~Hz}\right), 4.86\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{OCH}_{2}, J=7.3 \mathrm{~Hz}\right), 7.05-$ 7.15 (m, 1H, ar), $7.25-7.40(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ar}), 7.82-7.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ar})$, $8.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, J=8.9 \mathrm{~Hz}), 8.25-8.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ar}), 8.45-8.50$ ( $\mathrm{m}, 1 \mathrm{H}$, ar), $8.65(\mathrm{t}, 1 \mathrm{H}$, ar, $J=2.2 \mathrm{~Hz}$ ).

7-(Benzyloxy)-1,4-dihydro-3-methyl-1-(3-nitrophenyl)-[1]benzopyrano[2,3-c]pyrazol-4-one (15). A mixture of equimolar amounts ( 1.04 mmol ) of 10 , sodium ethoxide, and benzyl bromide in ethanol ( 10 mL ) was heated at reflux for

Table 2. Physical Data of the Newly Synthesized Compounds

| compd | mp, ${ }^{\circ} \mathrm{C}$ (solvent) ${ }^{a}$ | \% yield | compd | mp, ${ }^{\circ} \mathrm{C}$ (solvent) ${ }^{a}$ | \% yield |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 230-232 (A) | 67 | 28 | 293-296 (J) | 28 |
| 3 | 178-179 (B) | 80 | 29 | >300 (K) | 94 |
| 4 | 228-231 (A) | 75 | 30 | 265-268 (A) | 88 |
| 5 | 160-163 (B) | 91 | 31 | 197-198 (L) | 90 |
| 6 | 229-232 (A) | 86 | 32 | 290-291 (E) | 80 |
| 7 | 160-162 (C) | 55 | 33 | 280-282 (M) | 87 |
| 8 | 204-205 (A) | 72 | 38 | 233-234 (A) | 98 |
| 9 | $>300$ (D) | 77 | 39 | 211-212 (B) | 90 |
| 10 | $>300$ (E) | 90 | 40 | 241-243 (C) | 98 |
| 11 | 275-278 (D) | 74 | 41 | 193-196 (B) | 78 |
| 12 | $>300$ (E) | 80 | 42 | 210-213 (E) | 67 |
| 13 | $>300$ (C) | 70 | 44 | 238-239 (A) | 57 |
| 14 | 212-216 (F) | 70 | 45 | 220-221 (A) | 75 |
| 15 | 193-195 (D) | 82 | 46 | 234-236 (A) | 90 |
| 16 | 196-199 (G) | 47 | 47 | 225-226 (A) | 75 |
| 17 | 169-171 (B) | 70 | 48 | 165-168 (A) | 74 |
| 18 | 185-188 (B) | 46 | 49 | 218-221 (A) | 89 |
| 19 | 183-186 (B) | 62 | 50 | 203-204 (B) | 93 |
| 20 | $>300$ (E) | 70 | 51 | 250-251 (A) | 80 |
| 21 | 140-143 (C) | 54 | $52^{b}$ | 212-214 (C) | 83 |
| 22 | 190-194 (B) | 65 | 53 | 155-159 (H) | 40 |
| 23 | 141-143 (B) | 15 | 54 | 216-218 (C) | 64 |
| 24 | 275-277 (B) | 56 | 55 | 243-245 (B) | 64 |
| 25 | 214-218 (H) | 20 | 56 | 190-192 (C) | 75 |
| 26 | $>300$ (B) | 32 | 57 | $>300$ (B) | 90 |
| 27 | $>300$ (I) | 63 | 58 | 273-275 (N+B) | 60 |

${ }^{a}$ Recrystallization solvents: $\mathrm{A}=$ glacial acetic acid; $\mathrm{B}=$ ethanol; $\mathrm{C}=$ ethyl acetate; $\mathrm{D}=$ dioxane; $\mathrm{E}=$ dimethylformamide; $\mathrm{F}=$ nitromethane; $\mathrm{G}=$ ethyl acetate/glacial acetic acid; $\mathrm{H}=$ cyclohexane/ethyl acetate; $\mathrm{I}=$ ethanol/glacial acetic acid; $\mathrm{J}=$ ethyl acetate ethanol; $\mathrm{K}=$ product was washed with a saturated solution of $\mathrm{NaHCO}_{3}$ and then with acetone; $\mathrm{L}=$ acetone; $\mathrm{M}=$ ethanol/ dimethylformamide; $N=$ column chromatography, eluting system chloroform/methanol, 9:1. ${ }^{b}$ Reference $17 ; \mathrm{mp} 214-216{ }^{\circ} \mathrm{C}$ from ethanol.
2.5 h . The solid resulting from the cooled mixture was collected, washed with water, and recrystallized. IR: 1675, $1630,1540,1355 .{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ): $2.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.21$ ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$ ), $7.09-7.15(\mathrm{~m}, 2 \mathrm{H}$, ar), $7.35-7.50(\mathrm{~m}, 5 \mathrm{H}$, ar), $7.68-7.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ar}), 8.20-8.36(\mathrm{~m}, 3 \mathrm{H}$, ar), $8.83-8.90$ (m, 1 H , ar).

1-(3-Aminoaryl)-1,4-dihydro-3-methyl[1]benzopyrano-[2,3-c] pyrazol-4-ones 16-22. Method A. To a solution of the nitro derivative ( 1.2 mmol ) in glacial acetic acid ( 150 mL ) was added $40 \%, \mathrm{w} / \mathrm{w}, \mathrm{Pd} / \mathrm{C}(10 \%)$. The mixture was hydrogenated in a Parr apparatus at 30 psi for 20 h . Elimination of the catalyst and evaporation at reduced pressure of the solvent yielded a residue which was recrystallized. Following this method compounds, 16-19 were prepared from 2, 4, 6, and 8, respectively.
Method B. To a solution of the nitro derivative ( 1.4 mmol ) in ethyl acetate ( 200 mL ) was added $40 \% \mathrm{Pd} / \mathrm{C}(10 \%)$. The mixture was hydrogenated in a Parr apparatus at 20 psi for 16 h . Elimination of the catalyst and and evaporation at reduced pressure of the solvent yielded an oily residue which was worked up with cyclohexane ( 20 mL ) to yield a solid. The crude product was collected by filtration and recrystallized. Following this method, compound 21 was prepared from 13.
Method C. To a solution of the nitro derivative ( 0.6 mmol ) in dimethylformamide ( 40 mL ) was added $60 \%$, w/w, $\mathrm{Pd} / \mathrm{C}$ ( $10 \%$ ). The mixture was hydrogenated in a Parr apparatus at 30 psi for 16 h . The catalyst was filtered off, and the reaction was quenched with water $(200 \mathrm{~mL})$. The resultant precipitate was collected by filtration, washed thoroughly with diethyl ether, and recrystallized. Following this method, compounds 20 and 22 were prepared from 10 and 14, respectively.

Compound 16 displayed the following spectral data. IR: $3480,3350,3220,1675,1535 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 2.70(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3}$ ), 4.1 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$ ), $7.20-7.56$ (m, 5 H , ar), $7.65-7.71$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{ar}$ ), $8.35-8.39(\mathrm{~m}, 1 \mathrm{H}$, ar).

1-[3-(Benzylamino)phenyl]-1,4-dihydro-3-methyl[1]-benzopyrano[2,3-c]pyrazol-4-one (23). A mixture of 1 (1.7 mmol ), benzyl chloride ( 5.2 mmol ), and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.6 \mathrm{mmol})$ in anhydrous dimethylformamide ( 6 mL ) was heated under stirring in an oil bath at $80^{\circ} \mathrm{C}$ for 15 h . The reaction was quenched with water ( 10 mL ), and the resultant oil was extracted three times with chloroform ( 15 mL each time). The
combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was evaporated at reduced pressure to yield an oil which was purified by column chromatography, eluting system cyclohexane/ethyl acetate (6:4). Evaporation at reduced pressure of the solvents of the middle eluates afforded an oily residue which yielded a solid when worked up with ethanol. IR: $3400,3380,1660,1620,1540 .{ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.70(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$ ), 4.4 (br s, 1H, NH), $4.43\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ ), 6.64-6.68 (m, $1 \mathrm{H}, \mathrm{ar}), 7.10-7.48(\mathrm{~m}, 10 \mathrm{H}$, ar), $7.64-7.74(\mathrm{~m}, 1 \mathrm{H}$, ar), 8.35 (d, 1 H , ar, $J=7.8 \mathrm{~Hz}$ ).

2-Acetonyl-4 $\boldsymbol{H}$-3,1-benzoxazin-4-one. ${ }^{12}$ Equimolar amounts ( 29 mmol ) of anthranilic acid and 2,2,6-trimethyl-4H-1,3-dioxin-4-one (diketene acetone adduct) in xylene ( 6 mL ) were heated at $100{ }^{\circ} \mathrm{C}$ for 4 h while distilling off acetone. Xilene was then distilled off at reduced pressure. The resulting solid was suspended in $\mathrm{CCl}_{4}(12 \mathrm{~mL})$ and acetic anhydride ( 5 mL ) and heated at $80^{\circ} \mathrm{C}$ for 5 h . The cooled mixture yielded a solid which was collected and recrystallized from acetonitrile. $\mathrm{Mp}: 120-122{ }^{\circ} \mathrm{C}$ (lit. ${ }^{12} \mathrm{mp} \mathrm{121-122}{ }^{\circ} \mathrm{C}$ ). Yield: $40 \%$. IR: 1770, 1650. ${ }^{1} \mathrm{H}$ NMR analysis indicated that in solution (DMSO- $d_{6}$ ) the product was a mixture of the tautomeric keto (A) and enol (B) forms in a ratio of approximately $1.3: 1$, respectively: (A) $2.29\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 4.01\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$; (B) $2.10\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$, $5.36(\mathrm{~s},=\mathrm{CH}), 10.7(\mathrm{~s}, \mathrm{OH}), 7.05-8.15(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ar})$.


N-(1-Aryl-3-methylpyrazol-5-yl)anthranilic Acids 5255. 2-Acetonyl-4H-3,1-benzoxazin-4-one ${ }^{12}$ ( 5 mmol ) was added to a solution of equimolar amount of hydrazine free base (when noncommercialy available, the free base was obtained from the corresponding hydrochloride and triethylamine in diethyl ether or by treating the hydrochloride with sodium acetate in water) in ethanol ( 20 mL ) and heated at reflux for 30 min . The solid was isolated by filtration, washed with acetonitrile, and recrystallized. Compound 52 displayed the following spectral data. IR: $3300-2000,1685 .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}$ ): 2.25 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ ), 6.25 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4$ pyrazole), $6.75-6.85$ (m,
$1 \mathrm{H}, \mathrm{ar}$ ), 7.04 (d, 1 H , ar, $J=8.3 \mathrm{~Hz}$ ), $7.30-7.60(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ar})$, 7.88 (d, 1 H , ar, $J=7.9 \mathrm{~Hz}$ ), 9.89 (s, 1H, NH), 13.2 (br s, 1H, COOH ).

1-Aryl-4,9-dihydro-3-methyl-1H-pyrazolo[3,4-b]quino-lin-4-ones $24-27$. A mixture of $52-55(4 \mathrm{mmol})$ in poly(phosphoric acid) (about 10 g ) and $\mathrm{P}_{2} \mathrm{O}_{5}(5 \mathrm{~g})$ was heated under stirring in an oil bath at $90^{\circ} \mathrm{C}$ for 6 h . The reaction was quenched with ice and water, and the resulting solid was collected and recrystallized. Compound 24 displayed the following spectral data. IR: $3460,3240,1650,1600 .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$ ): 2.58 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ), $7.25-7.36(\mathrm{~m}, 1 \mathrm{H}$, ar), $7.52-$ $7.75(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ar}), 8.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, J=7.7 \mathrm{~Hz}), 11.75(\mathrm{~s}, 1 \mathrm{H}$, NH ).
4,9-Dihydro-1-(3-hydroxyphenyl)-3-methyl-1 H -pyrazolo-[3,4-b]quinolin-4-one (28). Hydrobromic acid ( $48 \%, 20 \mathrm{~mL}$ ) was added to a solution of $\mathbf{2 5}(2.6 \mathrm{mmol})$ in glacial acetic acid $(7 \mathrm{~mL})$. The mixture was heated at reflux for 10 h . The reaction was quenched with water to yield a solid which was collected and recrystallized. IR: $3500-2000,1630,1600 .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\mathrm{d}_{6}$ : $2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ar}), 7.06-$ 7.13 (m, 2H, ar), 7.22-7.48 (m, 2H, ar), 7.62-7.78 (m, 2H, ar), $8.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, J=7.9 \mathrm{~Hz}), 10.0(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 11.77(\mathrm{~s}, 1 \mathrm{H}$, NH ).

1-(3-Aminophenyl)-4,9-dihydro-3-methyl-1 $\boldsymbol{H}$-pyrazolo-[3,4-b]quinolin-4-one (29). To a solution of $26(2.2 \mathrm{mmol})$ in ethanol ( 150 mL ) was added $\mathrm{Pd} / \mathrm{C}(10 \%, 0.28 \mathrm{~g})$. The mixture was hydrogenated in a Parr apparatus at 20 psi for 16 h . Elimination of the catalyst and evaporation of the solvent at reduced pressure yielded a residue which did not bear heat and thus could not be recrystallized. IR: 3400,3260 , 1640, 1600. ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$ ): $2.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 5.5 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$ ), $6.60-6.85(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ar}), 7.20-7.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ar}), 7.55-$ $7.76(\mathrm{~m}, 2 \mathrm{H}$, ar), $8.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, J=7.8 \mathrm{~Hz}), 11.6(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{NH})$.

1-(3-Amino-4-chlorophenyl)-4,9-dihydro-3-methyl-1 $\boldsymbol{H}$ -pyrazolo[3,4-b]quinolin-4-one (30). To a solution of 27 (2.3 $\mathrm{mmol})$ in glacial acetic acid ( 100 mL ) was added $\mathrm{Pd} / \mathrm{C}(10 \%$, 0.32 g ). The mixture was hydrogenated in a Parr apparatus at 20 psi for 16 h . Elimination of the catalyst and evaporation of the solvent at reduced pressure yielded a residue which was recrystallized. IR: $3440,3360,1640,1595 .{ }^{1} \mathrm{H}$ NMR (DMSO$d_{6}$ ): $2.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.7\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.80-6.86(\mathrm{~m}, 1 \mathrm{H}$, ar), $7.06-7.08$ (m, 1 H , ar), $7.28-7.31$ (m, 1 H, ar), $7.40-7.45$ (m, 1H, ar), $7.60-7.80(\mathrm{~m}, 2 \mathrm{H}$, ar), $8.20(\mathrm{~d}, 1 \mathrm{H}$, ar, $J=7.8$ Hz ) 11.73 (s, 1H, NH).

3-(Arylamino)quinoxalin-2-amines 56-58. A mixture of 3 -chloroquinoxalin-2-amine ${ }^{13}(2.8 \mathrm{mmol})$ and the suitable aniline ( 3.1 mmol ) was heated in a sublimation apparatus at $170{ }^{\circ} \mathrm{C}$. The reaction was monitored by TLC (chloroform/ methanol, $9: 1$ ), and the heating was carried on until the starting chloroquinoxalinamine had disappeared. Upon cooling the solution precipitated the hydrochloride of the title compound which was worked up with diethyl ether/acetone ( $1: 1,5 \mathrm{~mL}$ ), collected by filtration, and recrystallized from ethanol. To a suspension of the hydrochloride ( 1.0 mmol ) in hot water ( 30 mL ), an equimolar amount of $\mathrm{NaHCO}_{3}$ was carefully added. The free base precipitated and was collected by filtration, washed with water, and recrystallized. Compound 56 displayed the following spectral data. IR: 3450 , 3180, 1625. ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}$ ): $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$ ), 6.64 (dd, $1 \mathrm{H}, \mathrm{ar}, J=10.67,2.49 \mathrm{~Hz}$ ), 7.0 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$ ), $7.24-$ 7.33 (m, 3H, ar), 7.41-7.56 (m, 3H, ar), 7.79-7.81 (m, 1H, ar), 9.65 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$ ).

1-Aryl-1H-imidazo[4,5-b]quinoxalines (31-33). A mixture of $56-58(1.0 \mathrm{mmol})$ in an excess of triethyl orthoformate $(1.8 \mathrm{~mL})$ was heated at $120^{\circ} \mathrm{C}$. The reaction was monitored by TLC (chloroform/methanol, 9:1), and the heating was carried on until the starting material had disappeared. The residue was worked up with a small amount of diethyl ether, collected by filtration, and recrystallized. Compound 31 displayed the following spectral data. IR: 3070, 1610, 1595. ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}$ ): $3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$ ), 7.12 (dd, $1 \mathrm{H}, \mathrm{ar}, J$ $=10.38,1.75 \mathrm{~Hz}), 7.56-7.71(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ar}), 7.84-7.90(\mathrm{~m}, 2 \mathrm{H}$, ar), $8.18-8.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ar}), 9.62$ ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$ ).
Biochemistry. $\mathbf{A}_{1}$ Receptor Binding. Rat cerebral cortex was homogenized in ice-cold 0.32 M sucrose containing
protease inhibitors ( $20 \mu \mathrm{~g} / \mathrm{mL}$ soybean trypsin inhibitor, 200 $\mu \mathrm{g} / \mathrm{mL}$ bacitracine, and $160 \mu \mathrm{~g} / \mathrm{mL}$ benzamidine) in an ultraturrax homogenizer. The homogenate was centrifuged at 1000 g for 10 min at $4^{\circ} \mathrm{C}$ and the supernatant again centrifuged at 48000 g for 15 min at $4^{\circ} \mathrm{C}$. The resulting pellet was suspended in 10 volumes of ice-cold 40 mM Tris- HCl buffer at pH 7.7 containing 2 mM MgCl 2 and protease inhibitors (buffer $\mathrm{T}_{1}$ ). Then it was homogenized and centrifuged at 48000 g for 15 min at $4^{\circ} \mathrm{C}$.
The pellet was dispersed in 40 volumes of fresh $T_{1}$ buffer, incubated with adenosine deaminase ( $1 \mathrm{IU} / \mathrm{mL}$ ) at $37{ }^{\circ} \mathrm{C}$ for 60 min , and then recentrifuged at 48000 g for 15 min at $4^{\circ} \mathrm{C}$. The resulting pellet was frozen at $-80^{\circ} \mathrm{C}$ until the time of assay.
The pellet was suspended in ice-cold $T_{1}$ buffer, and the $A_{1}$ binding assay was performed in triplicate by incubating at 25 ${ }^{\circ} \mathrm{C}$ for 45 min in 0.5 mL of $\mathrm{T}_{1}$ buffer containing $1.3 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]-$ CHA in the absence or presence of unlabeled $10 \mu \mathrm{M}(R)$ phenylisopropyladenosine. The binding reaction was terminated by filtering through Whatman GF/B glass fiber filters under suction and washing twice with 5 mL of ice-cold Tris buffer. The filters were placed in scintillation vials, and 4 mL of Beckman Ready-Protein solvent scintillation fluid was added. The radioactivity was counted with a LS 1800 scintillation counter. Specific binding was obtained by subtracting nonspecific binding from total binding and approximated to $85-90 \%$ of the total binding.
$\mathbf{A}_{\mathbf{2 a}}$ Receptor Binding. Corpora striata were dissected from rat brain, and the tissue was homogenized in 20 volumes of ice-cold 50 mM Tris- HCl buffer at pH 7.5 containing protease inhibitors as reported above and 10 mM MgCl (buffer $\mathrm{T}_{2}$ ). The homogenate was centrifuged at 48000 g for 10 min at $4^{\circ} \mathrm{C}$, the pellet then being suspended in 20 volumes of Tris buffer $\left(\mathrm{T}_{2}\right)$ containing adenosine deaminase ( $1 \mathrm{IU} / \mathrm{mL}$ ) and incubated for 30 min at $37^{\circ} \mathrm{C}$. The resulting pellet was diluted in 20 volumes of 50 mM Tris- HCl buffer at pH 7.5 containing $10 \mathrm{mM} \mathrm{MgCl}{ }_{2}$ and used in the binding assay.

The $\mathrm{A}_{2 \mathrm{a}}$ binding assay was performed in triplicate, by incubating aliquots of the membrane fraction $(0.2-0.3 \mathrm{mg}$ of protein) in Tris- HCl buffer at pH 7.5 , with approximately 4 $\mathrm{nM}\left[{ }^{3} \mathrm{H}\right] \mathrm{CGS} 21680$ in a final volume of 0.5 mL . Incubation was carried out at $25^{\circ} \mathrm{C}$ for 90 min . Nonspecific binding was defined in the presence of $10 \mu \mathrm{M}$ CGS 21680 . The binding reaction was concluded by filtration through Whatman GF/C glass fiber filters under reduced pressure. Filters were washed four times with 5 mL aliquots of ice-cold buffer and placed in scintillation vials. Specific binding was obtained by subtracting nonspecific binding from total binding and approximated to $85-90 \%$ of the total binding. The receptor-bound radioactivity was measured as described above. Compounds were dissolved in DMSO (buffer/concentration of 2\%) and added to the assay mixture. Blank experiments were carried out to determine the effect of the solvent on binding. Protein estimation was based on a reported method, ${ }^{18}$ after solubilization with 0.75 N sodium hydroxide, using bovine serum albumine as standard.

The concentration of tested compound that produced $50 \%$ inhibition of specific $\left[{ }^{3} \mathrm{H}\right] \mathrm{CHA}$ or $\left[{ }^{3} \mathrm{H}\right] \mathrm{CGS} 21680$ binding ( $\mathrm{IC}_{50}$ ) was determined by log-probit analysis with seven concentrations of the displacer, each performed in triplicate. Inhibition constants ( $K_{\mathrm{i}}$ ) were calculated according to the equation: ${ }^{19} K_{\mathrm{i}}$ $=\mathrm{IC}_{50} /\left(1+[\mathrm{L}] / K_{\mathrm{d}}\right)$, where $[\mathrm{L}]$ is the ligand concentration and $K_{\mathrm{d}}$ is its dissociation constant. $K_{\mathrm{d}}$ of $\left.{ }^{3} \mathrm{H}\right] \mathrm{CHA}$ binding to cortex membranes was 1.6 nM , and the $K_{\mathrm{d}}$ of [ $\left.{ }^{3} \mathrm{H}\right] C G S ~ 21680$ binding to striatal membranes was 15 nM . ${ }^{7}$

## References

(1) Stiles, G. L. Adenosine receptors. J. Biol. Chem. 1992, 267, 6451-6454.
(2) Zhou, Q.-Y.; Li, C. Y.; Olah, M. E.; Johnson, R. A.; Stiles, G. L.; Civelli, O . Molecular cloning and characterization of an adenosine receptor. The $\mathrm{A}_{3}$ adenosine receptor. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 7432-7436.
(3) Linden, J.; Taylor, H. E.; Robeva, A. S.; Tucker, A. L.; Stehle, J. H.; Rivkees, S. A.; Fink, J. S.; Reppert, S. M. Molecular cloning and functional expression of a sheep $A_{3}$ adenosine receptor with widespread tissue distribution. Mol. Pharmacol. 1993, 44, 524532.
(4) Salvatore, C. A.; Jacobson, M. A.; Taylor, H. E.; Linden, J.; Johnson, R. G. Molecular cloning and characterization of human $\mathrm{A}_{3}$ adenosine receptor. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 10365-10369.
(5) Linden, J. Cloned adenosine $\mathrm{A}_{3}$ receptors: pharmacological properties, species differences, and receptor functions. Trends Pharmacol. Sci. 1994, 15, 298-306.
(6) Catarzi, D.; Cecchi, L.; Colotta, V.; Melani, F.; Filacchioni, G.; Tacchi, P.; Tonelli, M.; Martini, C. Tricyclic heteroaromatic systems. Synthesis and adenosine receptor binding evaluation of pyrazolo-quinoline and [1]benzopyrano-pyrazole derivatives. Int. J. Purine Pyrimidine Res. 1991, 2, 113-121.
(7) Colotta, V.; Cecchi, L.; Catarzi, D.; Melani, F.; Filacchioni, G.; Martini, C.; Tacchi, P.; Lucacchini, A. 1-(3-Aminophenyl)-3methyl[1]benzopyrano[ $2,3-\mathrm{c}]$ pyrazol-4-one: a new selective $\mathrm{A}_{2}$ adenosine receptor antagonist. Pharm. Pharmacol. Lett. 1992, 2, 74-76.
(8) Colotta, V.; Cecchi, L.; Catarzi, D.; Melani, F.; Filacchioni, G.; Martini, C.; Tacchi, P.; Lucacchini, A. Novel adenosine receptor ligands: 1,3-disubstituted[1]benzopyrano[2,3-c]pyrazol-4-ones. Synthesis and structure-activity relationships. Recept. Channels 1993, 1, 111-119.
(9) Colotta, V.; Cecchi, L.; Catarzi, D.; Filacchioni, G.; Martini, C.; Tacchi, P.; Lucacchini, A. Synthesis of some tricyclic heteroaromatic systems and their $\mathrm{A}_{1}$ and $\mathrm{A}_{2 \mathrm{a}}$ adenosine binding activity. Eur. J. Med. Chem., in press.
(10) Badcock, G. G.; Dean, F. M.; Robertson, A.; Whalley, W. B. The chemistry of Fungi. The synthesis of 4 -hydroxy-3-acetylcoumarins. J. Chem. Soc. 1950, 903-908.
(11) Colotta, V.; Cecchi, L.; Melani, F.; Filacchioni, G.; Martini, C.; Gelli, S.; Lucacchini, A. Tricyclic heteroaromatic systems: [1]-benzopyrano-pyrazol-4-ones as benzodiazepine receptor ligands. J. Pharm. Sci. 1991, 80, 276-279.
(12) Puetter, R.; Wolfrum, G.; Hanke, H. G. German Patent 1,143515, 1963; Chem. Abstr. 1963, 59, 5174f.
(13) Hawort, R. D.; Robinson, S. Synthetic antimalarials. Part XXVII. Some derivatives of phthalazine, quimoxaline and quinoline. J. Chem. Soc. 1948, 777-782.
(14) DeWald, H. A. The synthesis of 4-(o-fluorophenyl)-6,8-dihydro-3,8-dimethylpyrazolo[3,4-e][1,4]diazepin-7(1H)one, a metabolite of Zolazepam. J. Heterocycl. Chem. 1974, 11, 1061-1062.
(15) Ning, R. Y.; Blount, J. F.; Madan, P. B.; Fryer, R. I. Intramolecula nitrene insertion into Nitrogen containing rings. Pyrolyses of 3-(1-methyl-2-imidazolyl)- and 3-(1-methyl-5-pyrazolyl)-2,1-benzisoxazole (Anthranils). J. Org. Chem. 1977, 42, 17911794.
(16) Plant, S. G. P.; Rosser, R. J. Derivatives of tetrahydrocarbazole. Part VII. Reactions of 3 -methyltetrahydrocarbazole, 6 -chlorotetrahydrocarbazole, and their acyl derivatives. J. Chem. Soc. 1928, 130, 2454-2464.
(17) Crenshaw, R. R.; Luke, G. M.; Siminoff, P. Interferon inducing activities of derivatives of 1,3-dimethyl-4-(3-dimethylaminopro-pylamino)-1H-pyrazolo[3,4-b]quinoline and related compounds. J. Med. Chem. 1976, 19, 262-275.
(18) Lowry, O. H.; Rosenbrough, N. J.; Farr, A. L.; Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265-275.
(19) Cheng, Y. C.; Prusoff, W. H. Relation between the inhibition constant $\mathrm{K}_{\mathrm{i}}$ and the concentration of inhibitor which causes fifty percent inhibition ( $\mathrm{IC}_{50}$ ) of an enzymic reaction. Biochem. Pharmacol. 1973, 22, 3099-3108.
JM940727W


[^0]:    * Abstract published in Advance ACS Abstracts, March 15, 1995.

